Quartic Plane Curve
   HOME

TheInfoList



OR:

In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, a quartic plane curve is a
plane algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
of the fourth
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
. It can be defined by a bivariate
quartic equation In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynomi ...
: :Ax^4+By^4+Cx^3y+Dx^2y^2+Exy^3+Fx^3+Gy^3+Hx^2y+Ixy^2+Jx^2+Ky^2+Lxy+Mx+Ny+P=0, with at least one of not equal to zero. This equation has 15 constants. However, it can be multiplied by any non-zero constant without changing the curve; thus by the choice of an appropriate constant of multiplication, any one of the coefficients can be set to 1, leaving only 14 constants. Therefore, the space of quartic curves can be identified with the
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction A ...
It also follows, from Cramer's theorem on algebraic curves, that there is exactly one quartic curve that passes through a set of 14 distinct points in
general position In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that ar ...
, since a quartic has 14 degrees of freedom. A quartic curve can have a maximum of: * Four connected components * Twenty-eight bi-tangents * Three ordinary
double point In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a parameter. The precise definition of a singular point depends on the type of curve being studied. Algebraic curves in the plane Algebraic curv ...
s. One may also consider quartic curves over other
fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ...
(or even
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
), for instance the
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
. In this way, one gets
Riemann surfaces In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versio ...
, which are one-dimensional objects over but are two-dimensional over An example is the
Klein quartic In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus with the highest possible order automorphism group for this genus, namely order orientation-preserving automorphisms, and automorphisms ...
. Additionally, one can look at curves in the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do ...
, given by homogeneous polynomials.


Examples

Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. * Bicorn *
Bullet-nose curve In mathematics, a bullet-nose curve is a unicursal quartic curve with three inflection points, given by the equation :a^2y^2-b^2x^2=x^2y^2 \, The bullet curve has three double points in the real projective plane, at and , and , and and , and ...
*
Cartesian oval In geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points (foci). These curves are named after French mathematician René Descartes, who used them in optics. Def ...
*
Cassini oval In geometry, a Cassini oval is a quartic plane curve defined as the locus (mathematics), locus of points in the plane (geometry), plane such that the Product_(mathematics), product of the distances to two fixed points (Focus (geometry), foci) is ...
*
Deltoid curve In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the insid ...
*
Hippopede In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. ...
*
Kampyle of Eudoxus The Kampyle of Eudoxus (Greek: καμπύλη ραμμή meaning simply "curved ine curve") is a curve with a Cartesian equation of :x^4 = a^2(x^2+y^2), from which the solution ''x'' = ''y'' = 0 is excluded. Alternative parameterizations In ...
*
Klein quartic In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus with the highest possible order automorphism group for this genus, namely order orientation-preserving automorphisms, and automorphisms ...
*
Lemniscate In algebraic geometry, a lemniscate is any of several figure-eight or -shaped curves. The word comes from the Latin "''lēmniscātus''" meaning "decorated with ribbons", from the Greek λημνίσκος meaning "ribbons",. or which alternative ...
**
Lemniscate of Bernoulli In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of points so that . The curve has a shape similar to the numeral 8 and to the ∞ symbol. I ...
**
Lemniscate of Gerono In algebraic geometry, the lemniscate of Gerono, or lemniscate of Huygens, or figure-eight curve, is a plane algebraic curve of degree four and genus zero and is a lemniscate In algebraic geometry, a lemniscate is any of several figure-eight o ...
*
Limaçon In geometry, a limaçon or limacon , also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. I ...
*
Lüroth quartic In mathematics, a Lüroth quartic is a nonsingular quartic plane curve containing the 10 vertices of a complete pentalateral. They were introduced by . showed that the Lüroth quartics form an open subset of a degree 54 hypersurface In geometry, ...
*
Spiric section In geometry, a spiric section, sometimes called a spiric of Perseus, is a quartic plane curve defined by equations of the form :(x^2+y^2)^2=dx^2+ey^2+f. \, Equivalently, spiric sections can be defined as bicircular quartic curves that are symme ...
*
Squircle A squircle is a shape intermediate between a square and a circle. There are at least two definitions of "squircle" in use, the most common of which is based on the superellipse. The word "squircle" is a portmanteau of the words "square" and "ci ...
**
Lamé's special quartic Lamé's special quartic, named after Gabriel Lamé, is the graph of the equation :x^4 + y^4 = r^4 where r > 0. It looks like a rounded square with "sides" of length 2r and centered on the origin. This curve is a squircle centered on the origi ...
*
Toric section A toric section is an intersection of a plane with a torus, just as a conic section is the intersection of a plane with a cone. Special cases have been known since antiquity, and the general case was studied by Jean Gaston Darboux.. Mathematical ...
*
Trott curve In the theory of algebraic plane curves, a general quartic plane curve has 28 bitangent lines, lines that are tangent to the curve in two places. These lines exist in the complex projective plane, but it is possible to define quartic curves for ...


Ampersand curve

The ampersand curve is a quartic plane curve given by the equation: :\ (y^2-x^2)(x-1)(2x-3)=4(x^2+y^2-2x)^2. It has
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
zero, with three ordinary double points, all in the real plane.


Bean curve

The bean curve is a quartic plane curve with the equation: :x^4+x^2y^2+y^4=x(x^2+y^2). \, The bean curve has genus zero. It has one singularity at the origin, an ordinary triple point.


Bicuspid curve

The bicuspid is a quartic plane curve with the equation :(x^2-a^2)(x-a)^2+(y^2-a^2)^2=0 \, where ''a'' determines the size of the curve. The bicuspid has only the two cusps as singularities, and hence is a curve of genus one.


Bow curve

The bow curve is a quartic plane curve with the equation: :x^4=x^2y-y^3. \, The bow curve has a single triple point at ''x''=0, ''y''=0, and consequently is a rational curve, with genus zero.


Cruciform curve

The cruciform curve, or cross curve is a quartic plane curve given by the equation :x^2y^2-b^2x^2-a^2y^2=0 \, where ''a'' and ''b'' are two
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
s determining the shape of the curve. The cruciform curve is related by a standard quadratic transformation, ''x'' ↦ 1/''x'', ''y'' ↦ 1/''y'' to the ellipse ''a''2''x''2 + ''b''2''y''2 = 1, and is therefore a rational plane algebraic curve of genus zero. The cruciform curve has three double points in the
real projective plane In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has b ...
, at ''x''=0 and ''y''=0, ''x''=0 and ''z''=0, and ''y''=0 and ''z''=0. Because the curve is rational, it can be parametrized by rational functions. For instance, if ''a''=1 and ''b''=2, then :x = -\frac,\quad y = \frac parametrizes the points on the curve outside of the exceptional cases where a denominator is zero. The
inverse Pythagorean theorem In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem or the upside down Pythagorean theorem) is as follows: :Let ''A'', ''B'' be the endpoints of the hypotenuse of a right triangle ''ABC''. Let ''D'' be t ...
is obtained from the above equation by substituting ''x'' with ''AC'', ''y'' with ''BC'', and each ''a'' and ''b'' with ''CD'', where ''A'', ''B'' are the endpoints of the hypotenuse of a right triangle ''ABC'', and ''D'' is the foot of a perpendicular dropped from ''C'', the vertex of the right angle, to the hypotenuse: :\begin AC^2 BC^2 - CD^2 AC^2 - CD^2 BC^2 &= 0 \\ AC^2 BC^2 &= CD^2 BC^2 + CD^2 AC^2 \\ \frac &= \frac + \frac \\ \therefore \;\; \frac &= \frac + \frac \end


Spiric section

Spiric sections can be defined as bicircular quartic curves that are symmetric with respect to the ''x'' and ''y'' axes. Spiric sections are included in the family of
toric section A toric section is an intersection of a plane with a torus, just as a conic section is the intersection of a plane with a cone. Special cases have been known since antiquity, and the general case was studied by Jean Gaston Darboux.. Mathematical ...
s and include the family of
hippopede In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. ...
s and the family of
Cassini oval In geometry, a Cassini oval is a quartic plane curve defined as the locus (mathematics), locus of points in the plane (geometry), plane such that the Product_(mathematics), product of the distances to two fixed points (Focus (geometry), foci) is ...
s. The name is from σπειρα meaning torus in ancient Greek. The Cartesian equation can be written as :(x^2+y^2)^2=dx^2+ey^2+f , and the equation in polar coordinates as :r^4=dr^2\cos^2\theta+er^2\sin^2\theta+f. \,


Three-leaved clover (trifolium)

The three-leaved clover or trifolium is the quartic plane curve : x^4+2x^2y^2+y^4-x^3+3xy^2=0. \, By solving for ''y'', the curve can be described by the following function: : y=\pm\sqrt, where the two appearances of ± are independent of each other, giving up to four distinct values of ''y'' for each ''x''. The parametric equation of curve is : x = \cos(3t) \cos t,\quad y = \cos(3t) \sin t. \, Gibson, C. G., ''Elementary Geometry of Algebraic Curves, an Undergraduate Introduction'', Cambridge University Press, Cambridge, 2001, {{isbn, 978-0-521-64641-3. Pages 12 and 78. In polar coordinates (''x'' = ''r'' cos φ, ''y'' = ''r'' sin φ) the equation is :r = \cos(3\varphi). \, It is a special case of
rose curve A rose is either a woody perennial flowering plant of the genus ''Rosa'' (), in the family Rosaceae (), or the flower it bears. There are over three hundred species and tens of thousands of cultivars. They form a group of plants that can be ...
with ''k'' = 3. This curve has a triple point at the origin (0, 0) and has three double tangents.


See also

*
Ternary quartic In mathematics, a ternary quartic form is a degree 4 homogeneous polynomial in three variables. Hilbert's theorem showed that a positive semi-definite ternary quartic form over the reals can be written as a sum of three squares of quadratic form ...
*
Bitangents of a quartic In the theory of algebraic plane curves, a general quartic plane curve has 28 bitangent lines, lines that are tangent to the curve in two places. These lines exist in the complex projective plane, but it is possible to define quartic curves for wh ...


References

Algebraic curves Plane curves